
	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	1	of	18

	

Android	Software	Reference	Manual	

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	2	of	18

Table	of	Contents	

Table of Contents
Introduction

Audience for this Guide
Getting Started

First encounter with the system
Configure Wifi

Toolbox for Application Developers
Toolbox for Embedded Developers
Update Android Binaries Packages
Board Bring Up

Configure udev
U-boot flash and eMMC partitioning
Flashing Android
Android booting

Functional Test for key Devices.
Checking the Wifi
Checking FXOS chip (accelerometer)

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	3	of	18

Warpx Software Reference Manual - This document

This	work	is	licensed	under	the	Creative	Commons	Attribution-Share	Alike	4.0	License.	To	view	a	copy	of	this	
license,	visit	http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

All derivative works are to be attributed to Nicola La Gloria and Diego Rondini of Kynetics LLC

For	more	information	on	Creative	Commons	go	to:	http://creativecommons.org/

	

	

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	4	of	18

Introduction	

Warpx is a Wearable Reference Platform, aimed at facilitating development and innovation for wearable products.

The purpose of this document is to help the user to quickly bring up the warpx board with the available software.
The software is released in source codes or binary objects. The user can build the entire stack from source or install
the binary images as explained in this guide. The latter is strongly recommended before building from sources and
customizing the Android Operating System.

At the time of writing some procedures described in this document are not definitive and still under
development by the warpx core team. This document will be constantly updated based on the latest
software release and procedures on how to build and deploy.

Audience	for	this	Guide	

Warpx is a flexible platform that can be interacted with in a variety of different ways. The current software is based
on Android 4.3.1.

Android developers, although covering a wide spectrum of users, can be mainly divided in two categories,
application developers and embedded system developers.
Application developers focus on app development using the Android SDK. One of the primarily goals of warpx is to
provide as many developers as possible the chance to design applications for wearable devices.
What an application developer needs to be operative is:

● A full bootable warpx Android operating system
● All the necessary Android SDK and IDE installed in the development host
● ADB interface working to debug and deploy applications

Embedded developers are more focussed on the development of embedded systems using the warpx based on
Android or Linux (or even more on custom operating systems). Embedded developer need:

● a serial console to debug the entire boot sequence
● the proper tools to flash the various operating system images
● Android SDK installed in the host machine
● BSP and Android source code to build and customize the system images.

This guide's purpose is to provide the necessary information to both applications and embedded developers to
maximize the potential of warpx by quickly enabling board bring up.

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	5	of	18

At the time of writing we used a Linux host machine for both application and system development.
Windows and MAC OS X are not supported yet in this documentation. You can easily setup a Linux
virtual machine using i.e Oracle VirtualBox that is free (https://www.virtualbox.org).

Getting	Started	

In this section we will go through some simple steps to setup your warpx and use the default Android 4.3 OS and
example applications pre-installed.

We assume that your warpx setup is:

● warpx main board
● warpx interposed board
● Touch Screen

Refer	to	the	Hardware	Reference	Manual for more information on how set up the warpx unboxing.

When you power up your warpx, (the first boot may take a while because the data partition is populated).
The device, out of the box, is already in developer debug mode and if the USB OTG cable is connected to the warpx
board, the OS should notify you to store the HOST computer RSA key fingerprint to enable ADB access.
From the host machine you should be able to give:

$ adb devices
List of devices attached
0123456789ABCDEF device
$ adb shell
root@warpx:/ #

You have root access to the warpx shell!

First	encounter	with	the	system	
When the boot is completed the warpx Launcher is loaded.
The launcher presents all the demo applications in a vertical scrollable list.

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	6	of	18

At	the	time	of	writing,	Android	is	not	configured	to	use	the	GPIO	buttons	on	the	interposer	board	as	
HOME	and	BACK	(however	it	can	be	easily	done).	Android	can	emulate	those	buttons	using	the	input	
keyevent	#.
Refer	to	https://developer.android.com/reference/android/view/KeyEvent.html

Available applications are:

● Watch: show the time, stopwatch, program alarms
● Music: browse and play music
● Gallery: browse and show images
● Video: browse and play video
● Compass: show cardinal directions
● Freefall: detect when the board is falling (use at own risk!)
● Settings: simplified version of Android Settings. Allow to connect to Wifi, pair with Bluetooth, adjust

Sound volumes, change Display settings, modify Date and time-zone.

Pressing	the	BACK1 button in the main screen brings to the status page.

	

	

1 At the present time, the platform does not support GPIO buttons on the interposer board as BACK and HOME
Android buttons. It is possible to use software key emulation

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	7	of	18

Configure	Wifi	
To configure wifi network go to settings pressing the gear icon in the second launcher page

In the settings page press Wi-Fi

and select your network.
If	necessary	input2 the passkey based on your authentication type.
Once the connection is established you should be able to ping the outside network:

root@warpx:/ # ping google.com
PING google.com (173.194.115.66) 56(84) bytes of data.
64 bytes from dfw06s41-in-f2.1e100.net (173.194.115.66): icmp_seq=1 ttl=53 time=72.8 ms
64 bytes from dfw06s41-in-f2.1e100.net (173.194.115.66): icmp_seq=2 ttl=53 time=76.0 ms
64 bytes from dfw06s41-in-f2.1e100.net (173.194.115.66): icmp_seq=3 ttl=53 time=74.5 ms
...

	

2 Today the standard Android keyboard is available.

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	8	of	18

Toolbox	for	Application	Developers	

An application developer can quickly start working with the warpx.
The board comes with Android 4.3 operating system preinstalled and applications examples released under GPL
license. It can be helpful to start from these examples and customize the code, build and deploy on the warpx.
To develop software you can use your prefered OS. All development tools are available for all the platforms:
Windows, Mac OSX, Linux.

First,	download	and	install	the	Android	SDK	on	your	development	host.	All	the	information	is		available	here:	
http://developer.android.com/sdk/installing/index.html.
To	download	the	SDK	for	your	platform	go	to:	http://developer.android.com/sdk/index.html#Other.
The	Android	SDK	Manager	(you	can	find	the	binary,	named	android, in the “tool” directory of the SDK) will provide
you all the available packages:

Required packages are:

● Android SDK Tools
● Android Platform Tools

http://developer.android.com/sdk/installing/index.html
http://developer.android.com/sdk/index.html#Other

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	9	of	18

● Android SDK build Tools
● Android 4.3.1 API 18

To	debug	the	warpx,	ADB	is	the	primary	command	line	tool	(http://developer.android.com/tools/help/adb.html).
To write the warpx software Eclipse IDE (www.eclipse.org) has been used with the ADT plugin. Eclipse is available
for all platforms.
Refer	to	the	on	line	guide	http://developer.android.com/tools/help/adt.html to install the ADT plugin.
Once you install the required packages and Eclipse + ADT, it’s possible to easily debug the warpx inside the IDE
environment.

The device, out of the box, is already in developer debug mode and if the USB OTG cable is connected to the warpx
board, the OS should notify you to store the HOST computer RSA key fingerprint to enable ADB access.

Using Eclipse + ADT you can deploy your application directly on the warpx.
Another	popular	IDE	is	Android	Studio:	https://developer.android.com/training/basics/firstapp/index.html.

Today the most popular Android IDE is Android Studio. This guide is still referring to Eclipse + ADT
plugin.

http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adt.html
https://developer.android.com/training/basics/firstapp/index.html

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	10	of	18

Toolbox	for	Embedded	Developers	
Warpx	uses	u-boot	as	bootloader	with	fastboot support.
Embedded developer first need to have access to the device console used to debug in the early stage of the boot
process.
Warp_0x01	does	not	come	with	a	physical	serial	console	out	of	the	box,	therefore	it’s	necessary	to	have	the	
Development	Interposer	Board	(DIP). This is a development and debugging board that provides all the necessary
amenities to the early stage board bring up.

Warpx kernel supports the g_multi gadget (using the USB OTG) which provide a serial interface once
the module is loaded by the system. However this gadget support is not provided by uboot.

Different programs and utilities will be part of your toolbox depending on what you are trying to accomplish, this
guide provide all this information.
To start deploying existing pre-build images you need:

● linux host machine with all the build essentials installed (compiler, linker, dev libraries, etc.)
● the	Android	SDK	and	Platform	tools	http://developer.android.com/sdk/installing/index.html
● Fastboot (you can find it in the Platform Tools)
● Minicom or other terminal emulation software

Update	Android	Binaries	Packages	
Binary images can be provided, over the time, to be flashed in the warpx. These images may contain the latest
bugfix or new features. Update the entire system is very simple and straightforward.

Any system update is provided by the following images:

1. boot.img
2. recovery.img
3. system.img

Configure	udev	to	support	fastboot	by	defining	a	rule	for	the	device	ID	18d1:0d02 Google Inc.
This allows you to handle the attached device by a regular user, not root.

SUBSYSTEM=="usb",ATTR{idVendor}=="18d1",ATTR{idProduct}=="0d02",MODE="0640",OWNER="user"

http://developer.android.com/sdk/installing/index.html

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	11	of	18

where	user	is	your	user	in the host machine.
Setup the warpx for the update:

1. connect the warpx USB cable to your host machine (this will transfer the file over fastboot)
2. connect the DIP USB cable to your host machine (this will carry the serial interface)
3. power up the DIP with 12V power supply

Power up the board and press the spacebar within 3 seconds to stop u-boot to load the operating system:

U-Boot 2013.04-00158-gf6b5254-dirty (Oct 13 2014 - 19:38:04)

CPU: Freescale i.MX6SL rev1.2 at 792 MHz
CPU: Temperature 45 C, calibration data: 0x55f4e45f
Reset cause: WDOG
Board: warpx Board
I2C: ready
DRAM: 512 MiB
MMC: FSL_SDHC: 0
MMC Device 1 not found
No MMC card found
Using default environment

In: serial
Out: serial
Err: serial
MMC Device 1 not found
no mmc device at slot 1
Configuring display bridge
check_and_clean: reg 0, flag_set 0
Fastboot: Normal
flash target is MMC:0
RUNNING ESDHC INIT
Setting reg 0x021940C0 to 0x00000002
Normal Boot
Hit any key to stop autoboot: 0
=>
=>
=>

then launch fastboot (server) from the serial console.

=> fastboot
fastboot is in init......USB Mini b cable Connected!
fastboot initialized
USB_SUSPEND
USB_RESET
USB_PORT_CHANGE 0x4
USB_RESET
USB_PORT_CHANGE 0x4
USB_RESET
USB_PORT_CHANGE 0x4

In the host machine verify the fast boot connection with:

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	12	of	18

$ fastboot devices
12345 fastboot

and then flash the three images:

$ fastboot flash boot boot.img
sending 'boot' (4266 KB)...
OKAY [0.628s]
writing 'boot'...
OKAY [0.197s]
finished. total time: 0.825s

$ fastboot flash recovery recovery.img
sending 'recovery' (4806 KB)...
OKAY [0.708s]
writing 'recovery'...
OKAY [0.225s]
finished. total time: 0.933s

$ fastboot flash system system.img
sending 'system' (286720 KB)...
OKAY [40.104s]
writing 'system'...
OKAY [11.470s]
finished. total time: 51.576s

In the meantime you will see output messages in the console that shows the writing process (that we omit here)

Now	exit	from	fastboot	mode	in	the	host	machine	with3:

$ fastboot continue
resuming boot...
OKAY [0.006s]
finished. total time: 0.007s

Now press the BT1 on the DIP board for 3 seconds and the system will reboot.

3	Because	in	u-boot	if	you	press	‘enter’	you	actually	repeat	the	last	command	you	gave	(i.e	the	fastboot	command),	
be	aware	to	not	press	enter	when	in		fastboot	mode	or	you	will	open	another	fastboot	session.	Here	you	need	to	
give	fastboot continue many times as you pressed enter.

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	13	of	18

	

Board	Bring	Up	
In this section we will go through the process of flashing a pre-built Android image on the warpx from scratch. This
may be applied if you want to update the bootloader, custom board bring up or severe system failure.

The board is shipped with a bootloader so this procedure can be skipped by the reader if not necessary or you are an
application developer.

It’s is assumed you know the basic of AOSP, embedded systems and at least have a good handle on how Linux
works and how to interact with its command line. A serial console is required in order to go through the contents of
this section. To have access to the serial console you need to have the warpx Interposer board.

The process that we describe is useful to anyone who wants to start from scratch in case of some kind of
board early stage bring up. In practice this means that when the device is powered down,and u-boot
must be transferred into RAM

Configure	udev	
There are some minor tweaks that are required in the host machine to properly configure the various USB devices.
The different USB devices you will be interacting with are:

1. ID	0403:6010 Future Technology Devices International, Ltd FT2232C Dual USB-UART/FIFO IC
2. ID	15a2:0063 Freescale Semiconductor, Inc. (USB OTG on the warpx)
3. ID	18d1:0d02 Google Inc. (when using fastboot)
4. ID	18d1:4e42 Google Inc. (ADB interface when Android is loaded)

To operate properly (2),(3),(4) udev rules should be defined in order to have the right permission to access those
devices. For this purpose a set of udev rules should be created in particular:

SUBSYSTEM=="usb",ATTR{idVendor}=="15a2",ATTR{idProduct}=="0063",MODE="0640",OWNER="user"
SUBSYSTEM=="usb",ATTR{idVendor}=="18d1",ATTR{idProduct}=="0d02",MODE="0640",OWNER="user"
SUBSYSTEM=="usb",ATTR{idVendor}=="18d1",ATTR{idProduct}=="4e42",MODE="0640",OWNER="user"

where	user is the user that will interact with the system (not root)

	

U-boot	flash	and	eMMC	partitioning	

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	14	of	18

There are two way to load a new uboot on the system. The fastest way is to use the NXP MFC Tools modified for
warpx. This can be downloaded from warpx.io. NXP MFC runs only under Windows.

If	you	are	using	Linux	and	you	DON’T	want	to	use	Windows	(or	you	don’t	simply	use	Windows)	you	need	to	load	
Uboot,	Kernel	and	a	Linux	ramdisk	in	memory	using	an	external	tool	called	usb-loader.

Refer	to	warpx.io/resources	for	the	binary	kernel	image	and	the	RAM	disk	necessary	to	this	operation.

To be able to manually load a prebuilt U-Boot the Interposer Board Boot mode header (BM0 jumper) should be
closed: this forces the serial bootloader mode. See separate “Interposer Guide” to identify the Boot mode header on
your Interposer Board.
The following procedure describes how to load into RAM a new u-boot.
For this purpose we need use imx_usb tool.
The	imx_usb tools allows to easily load binaries in memory and start U-Boot.
To download and build imx_usb from sources:

$ git clone https://github.com/warpxboard/imx_usb_loader.git -b warpx/master
$ cd imx_usb_loader
$ make

You will need the libusb1 development package installed into your linux host.
Now plug the warpx board in the warpx Interposer Board set the BM0 jumper and connect its serial (micro usb) port
to the host computer. You should see

$ lsusb
Bus 001 Device 023: ID 15a2:0063 Freescale Semiconductor, Inc.

 You could open your minicom pointing to the USB serial port

$ minicom -D /dev/ttyUSB0

You	need	now	the	warpx	u-boot	binary,	and	the	rootfs.img	binary	(downloaded	from	warpx.io	or	built	from	
sources)	to	be	loaded	into	warpx	using	imx_usb.	If	you	place	the	u-boot	binary	in	the	same	directory	of	the	
imx_usb	binary	you	should	just	give4

$./imx_usb

Once the u-boot is loaded, on the client side give (your host machine) give:

4 The u-boot binary version is only indicative.

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	15	of	18

$ fastboot devices
12345 fastboot usb:3-2.3

$ fastboot boot rootfs.img
downloading 'boot.img'...
OKAY [0.352s]
booting...
OKAY [0.009s]
finished. total time: 0.361s

When the linux system is loaded, login as root (empty password) and if you need to partition the eMMC for Android
just give the following command:

sfdisk -L /dev/mmcblk0 < part_table

File	part_table is preloaded in the Linux ramdisk.
Now three partitions need then to be formatted with:

mkfs.ext4 -L data /dev/mmcblk0p4
mkfs.ext4 -L cache /dev/mmcblk0p6
mkfs.ext4 -L vendor /dev/mmcblk0p7

To flash the u-boot just create the following shell script (if not already present in the root dir):

#!/bin/bash
#make boot partition writable
echo 0 > /sys/block/mmcblk0boot0/force_ro && sync
#clear uboot params
dd if=/dev/zero of=/dev/mmcblk1 bs=512 seek=1536 count=16
#write uboot
dd if=uboot.imx of=/dev/mmcblk1boot0 bs=512 seek=2 && sync

And execute it after setting the 755 permissions.
Then you can reboot the system.

Flashing	Android	
The	system	is	now	ready	to	be	flashed	with	fastboot	as	explained	in	here.

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	16	of	18

Android booting	
Android now can be booted from U-Boot with the command:

=> booti mmc0

and in the console terminal we should have

booti mmc0
kernel @ 80808000 (4126948)
ramdisk @ 81800000 (237385)
kernel cmdline:
 use boot.img command line:
 console=ttymxc0,115200 init=/init androidboot.console=ttymxc0 androidboot.hardware=freescale csi

Starting kernel ...

Initializing cgroup subsys cpuset
Initializing cgroup subsys cpu
Linux version 3.0.35-06447-gd615ab2 (developer@droidbake-vm) (gcc version 4.6.x-google 20120106
(prerelease)4
CPU: ARMv7 Processor [412fc09a] revision 10 (ARMv7), cr=10c53c7d
CPU: VIPT nonaliasing data cache, VIPT aliasing instruction cache
Machine: warpx Board Wearable Reference Platform
Memory policy: ECC disabled, Data cache writeback
CPU identified as i.MX6SoloLite, silicon rev 1.2
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 117760
Kernel command line: console=ttymxc0,115200 init=/init androidboot.console=ttymxc0
androidboot.hardware=freei
PID hash table entries: 2048 (order: 1, 8192 bytes)
Dentry cache hash table entries: 65536 (order: 6, 262144 bytes)
Inode-cache hash table entries: 32768 (order: 5, 131072 bytes)
Memory: 464MB = 464MB total
Memory: 457316k/457316k available, 66972k reserved, 0K highmem
…
Freeing init memory: 204K
adb_open
…
root@warpx:/ #
130|root@warpx:/ #

Functional	Test	for	key	Devices.		
The following section covers some functional test for key devices

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	17	of	18

This section will be updated with more test cases

Checking	the	Wifi	
To check if wifi is functional first look to see if the interface loads correctly by command line:

root@warpx:/ # svc wifi enable

wifi_probe
wifi_set_power = 1
root@warpx:/ # wifi_set_carddetect = 1
F1 signature read @0x18000000=0x16844330
DHD: dongle ram size is set to 294912(orig 294912)
wl_create_event_handler thr:da9 started
p2p0: P2P Interface Registered
dhd_attach thr:dae started
dhd_attach thr:daf started
dhd_attach thr:db0 started
Broadcom Dongle Host Driver: register interface [wlan0] MAC: 00:90:4c:11:22:33

Dongle Host Driver, version 5.90.195.104
Compiled in drivers/net/wireless/bcmdhd on Nov 19 2014 at 17:20:29
wifi_set_power = 0
=========== WLAN placed in RESET ========

Dongle Host Driver, version 5.90.195.104
Compiled in drivers/net/wireless/bcmdhd on Nov 19 2014 at 17:20:29
wl_android_wifi_on in
wifi_set_power = 1
=========== WLAN going back to live ========
sdio_reset_comm():
dhdsdio_write_vars: Download, Upload and compare of NVRAM succeeded.
add wake up source irq 104
Firmware up: op_mode=4, Broadcom Dongle Host Driver mac=00:37:6d:16:82:fa
p2p0: p2p_dev_addr=02:37:6d:16:82:fa

Then we can check the signal strength by loading the wifi settings by command line:

root@warpx:/ # am start -a android.intent.action.MAIN -n \ com.android.settings/.wifi.WifiSettings

	
	 warpx	-	Software	Reference	Manual

Revision	1.0		(updated:	July	25,	2016)

					

																								www.warpx.io		Page	18	of	18

Checking	FXOS	chip	(accelerometer)	

root@warpx:/ # dmesg | grep fxos

A	fxos	that	is	functioning	correctly	will	return:

root@warpx:/ # dmesg | grep fxos
<4>fxos8700_device_init succ

A	fxos	that	is	not	functioning	correctly	will	return:

root@warpx:/ # dmesg | grep fxos
<3>fxos 8700 read chip ID 0x0 is not equal to 0xc7 or 0xc4
<4>fxos8700: probe of spi1.0 failed with error -22

	h.kvvp36eqgaos
	h.wtvzap7bwugy
	h.q7yy3qtqki7l
	h.fbr2gdqg9k8a
	h.p8uj1p8s6yw1
	h.90nb1ajf0496
	h.cygbtlfmjuld
	h.s88xz6t8ce06
	h.5pspvkxj3zud
	h.l5ukkdr8ir7b
	h.2qqspsppuexr
	h.7eodkek4fwwy
	h.luwaub6im434
	h.t8kfr5ojtmno
	h.r51o2e5fgw4q
	h.dhklf98setxh
	h.6dv7h4o198ru
	h.ukzlm7o85asg
	h.m5fs066av2ne
	h.hpkq9jsxs8w5
	h.1l5a0eiseo43
	h.nfca82780qja
	h.npjx6rsc6cr0
	h.gfxz0hrgqd0p
	h.fkfo8jdwsflk
	h.9689sjt22o08

